ALLCools.plot
Contents
ALLCools.plot
¶
Subpackages¶
Submodules¶
ALLCools.plot.categorical_scatter
ALLCools.plot.color
ALLCools.plot.continuous_scatter
ALLCools.plot.contour
ALLCools.plot.decomposition
ALLCools.plot.dendro
ALLCools.plot.interactive_scatter
ALLCools.plot.qc_plots
ALLCools.plot.size
ALLCools.plot.sunburst
ALLCools.plot.text_anno_scatter
ALLCools.plot.utilities
Package Contents¶
- categorical_scatter(data, ax, coord_base='umap', x=None, y=None, hue=None, palette='auto', text_anno=None, text_anno_kws=None, text_anno_palette=None, text_transform=None, dodge_text=False, dodge_kws=None, show_legend=False, legend_kws=None, s=5, size=None, sizes: dict = None, size_norm=None, axis_format='tiny', max_points=5000, labelsize=4, linewidth=0, zoomxy=1.05, outline=None, outline_pad=3, outline_kws=None, scatter_kws=None, return_fig=False, rasterized='auto')¶
- Plot scatter plot with these options:
Color by a categorical variable, and generate legend of the variable if needed
Add text annotation using a categorical variable
Circle categories with outlines
- Parameters
data – Dataframe that contains coordinates and categorical variables
ax – this function do not generate ax, must provide an ax
coord_base – coords name, if provided, will automatically search for x and y
x – x coord name
y – y coord name
hue – categorical col name or series for color hue
palette – palette of the hue, str or dict
text_anno – categorical col name or series for text annotation
text_anno_kws –
text_anno_palette –
text_transform –
dodge_text –
dodge_kws –
show_legend –
legend_kws –
s –
size –
sizes –
size_norm –
axis_format –
max_points –
labelsize –
linewidth –
zoomxy –
outline –
outline_pad –
outline_kws –
scatter_kws – kws dict pass to sns.scatterplot
- continuous_scatter(data, ax, coord_base='umap', x=None, y=None, scatter_kws=None, hue=None, hue_norm=None, hue_portion=0.95, cmap='viridis', colorbar=True, colorbar_label_kws=None, size=None, size_norm=None, size_portion=0.95, sizes=None, sizebar=True, text_anno=None, dodge_text=False, dodge_kws=None, text_anno_kws=None, text_anno_palette=None, text_transform=None, axis_format='tiny', max_points=5000, s=5, labelsize=4, linewidth=0.5, cax=None, zoomxy=1.05, outline=None, outline_kws=None, outline_pad=2, return_fig=False, rasterized='auto')[source]¶
- interactive_scatter(data, hue=None, coord_base='umap', continous_cmap='viridis', size=5, max_points=3000)¶
Plot an interactive scatter plot with plotly
- Parameters
data –
hue –
coord_base –
continous_cmap –
size –
max_points –
- sunbrust(pie_data, ax, hue=None, hue_portion=0.5, cmap='viridis', colorbar=True, colorbar_kws=None, inner_radius=0.25, outer_radius=1, anno_col=None, text_anno='text', anno_layer_size=0.05, col_color_dict=None, startangle=0, anno_ang_min=5, anno_border=1.2, text_expend=1.05, uniform_section=False, order_dict=None)[source]¶
- Parameters
pie_data – Tidy dataframe
ax –
hue –
hue_portion –
cmap –
colorbar –
colorbar_kws –
inner_radius –
outer_radius –
anno_col –
text_anno –
anno_layer_size –
col_color_dict –
startangle –
anno_ang_min –
anno_border –
text_expend –
uniform_section –
order_dict –
- plot_decomp_scatters(adata, n_components, base_name='PC', obsm_name='X_pca', hue=None, palette='viridis', hue_quantile=(0.25, 0.75), nrows=5, ncols=5)[source]¶
- plot_dendrogram(linkage_df, ax, dendro=None, labels=None, dendro_kws=None, plot_node_id=False, plot_non_singleton=True, plot_kws=None, node_hue=None, node_hue_norm=None, node_hue_cbar=True, node_hue_cbar_frac=0.1, node_palette='viridis', node_size=None, node_size_norm=None, node_sizes=None, line_hue=None, line_hue_norm=None, line_palette='gray_r', linewidth=1.5, edge_color='gray', marker_size=60, marker_color='lightblue')[source]¶
- Parameters
linkage_df –
dendro –
labels –
dendro_kws –
ax –
plot_node_id –
plot_non_singleton –
plot_kws –
node_hue –
node_hue_norm –
node_hue_cbar –
node_hue_cbar_frac –
node_palette –
node_size –
node_size_norm –
node_sizes –
line_hue –
line_hue_norm –
line_palette –
linewidth –
edge_color –
marker_size –
marker_color –