Basic Cell Clustering Using 100Kb Bins

Content

Here we go through the basic steps to perform cell clustering using genome non-overlapping 100Kb bins as features. We start from raw methylation base count data stored in MCDS format. This notebook can be used to quickly evaluate cell-type composition in a single-cell methylome dataset (e.g., the dataset from a single experiment).

Dataset used in this notebook

  • Adult (age P56) male mouse brain hippocampus (HIP) snmC-seq2 data from [Liu et al., 2021].

Input

  • MCDS files (contains chrom100k count matrix)

  • Cell metadata

Output

  • Cell-by-100kb-bin AnnData with embedding coordinates and cluster labels.

Import

import pandas as pd
import numpy as np
import scanpy as sc
import matplotlib.pyplot as plt

from ALLCools.mcds import MCDS
from ALLCools.clustering import tsne, significant_pc_test, log_scale
from ALLCools.plot import *

Parameters

# change this to the path to your metadata
metadata_path = '../../data/Brain/snmC-seq2/HIP.CellMetadata.csv.gz'

# Basic filtering parameters. 
# These are suggesting values, cutoff maybe different for different tissue and sequencing depths.
# To determine each cutoff more appropriately, one need to plot the distribution of each metric.
mapping_rate_cutoff = 0.5
mapping_rate_col_name = 'MappingRate'  # Name may change
final_reads_cutoff = 500000
final_reads_col_name = 'FinalReads'  # Name may change
mccc_cutoff = 0.03
mccc_col_name = 'mCCCFrac'  # Name may change
mch_cutoff = 0.2
mch_col_name = 'mCHFrac'  # Name may change
mcg_cutoff = 0.5
mcg_col_name = 'mCGFrac'  # Name may change

# change this to the paths to your MCDS files, 
# ALLCools.MCDS can handle multiple MCDS files automatically
mcds_path = '../../data/Brain/snmC-seq2/Liu2021Nature.mcds/'

# Dimension name used to do clustering
# This corresponding to AnnData .obs and .var
obs_dim = 'cell'  # observation
var_dim = 'chrom100k'  # feature

# feature cov cutoffs
min_cov = 500
max_cov = 3000

# Regions to remove during the clustering analysis
# change this to the path to ENCODE blacklist.
# The ENCODE blacklist can be downloaded from https://github.com/Boyle-Lab/Blacklist/
black_list_path = '../../data/genome/mm10-blacklist.v2.bed.gz'
black_list_fraction = 0.2
exclude_chromosome = ['chrM', 'chrY']

# load to memory or not
load = True

# HVF
mch_pattern = 'CHN'
mcg_pattern = 'CGN'
n_top_feature = 20000

# PC cutoff
pc_cutoff = 0.1

# KNN
knn = -1  # -1 means auto determine

# Leiden
resolution = 1

Load Cell Metadata

metadata = pd.read_csv(metadata_path, index_col=0)
print(f'Metadata of {metadata.shape[0]} cells')
metadata.head()
Metadata of 16985 cells
AllcPath mCCCFrac mCGFrac mCGFracAdj mCHFrac mCHFracAdj FinalReads InputReads MappedReads DissectionRegion BamFilteringRate MappingRate Plate Col384 Row384 FANSDate Slice Sample
10E_M_0 /gale/raidix/rdx-4/mapping/10E/CEMBA190625-10E... 0.008198 0.822633 0.821166 0.041640 0.033718 1626504.0 4407752 2892347.0 10E 0.562347 0.656195 CEMBA190625-10E-1 0 0 190625 10 10E_190625
10E_M_1 /gale/raidix/rdx-4/mapping/10E/CEMBA190625-10E... 0.006019 0.743035 0.741479 0.024127 0.018218 2009998.0 5524084 3657352.0 10E 0.549577 0.662074 CEMBA190625-10E-1 0 1 190625 10 10E_190625
10E_M_10 /gale/raidix/rdx-4/mapping/10E/CEMBA190625-10E... 0.006569 0.750172 0.748520 0.027665 0.021235 1383636.0 3455260 2172987.0 10E 0.636744 0.628892 CEMBA190625-10E-1 19 0 190625 10 10E_190625
10E_M_101 /gale/raidix/rdx-4/mapping/10E/CEMBA190625-10E... 0.006353 0.760898 0.759369 0.026547 0.020323 2474670.0 7245482 4778768.0 10E 0.517847 0.659551 CEMBA190625-10E-1 18 3 190625 10 10E_190625
10E_M_102 /gale/raidix/rdx-4/mapping/10E/CEMBA190625-10E... 0.005409 0.752980 0.751637 0.019497 0.014164 2430290.0 7004754 4609570.0 10E 0.527227 0.658063 CEMBA190625-10E-1 19 2 190625 10 10E_190625

Filter Cells

judge = (metadata[mapping_rate_col_name] > mapping_rate_cutoff) & \
        (metadata[final_reads_col_name] > final_reads_cutoff) & \
        (metadata[mccc_col_name] < mccc_cutoff) & \
        (metadata[mch_col_name] < mch_cutoff) & \
        (metadata[mcg_col_name] > mcg_cutoff)

metadata = metadata[judge].copy()
print(f'{metadata.shape[0]} cells passed filtering')
16985 cells passed filtering
# Save
# metadata.to_csv('Brain.CellMetadata.PassQC.csv.gz')

Load MCDS

mcds = MCDS.open(
    mcds_path, 
    obs_dim='cell', 
    var_dim='chrom100k',
    use_obs=metadata.index  # MCDS contains all cells, this will select cells that passed filtering 
)
total_feature = mcds.get_index(var_dim).size
mcds
<xarray.MCDS>
Dimensions:              (cell: 16985, chrom100k: 27269, count_type: 2, mc_type: 2)
Coordinates:
  * cell                 (cell) <U10 '10E_M_207' '10E_M_338' ... '9J_M_2969'
  * chrom100k            (chrom100k) int64 0 1 2 3 4 ... 27265 27266 27267 27268
    chrom100k_bin_end    (chrom100k) int64 dask.array<chunksize=(27269,), meta=np.ndarray>
    chrom100k_bin_start  (chrom100k) int64 dask.array<chunksize=(27269,), meta=np.ndarray>
    chrom100k_chrom      (chrom100k) <U5 dask.array<chunksize=(27269,), meta=np.ndarray>
  * count_type           (count_type) <U3 'mc' 'cov'
  * mc_type              (mc_type) <U3 'CGN' 'CHN'
    strand_type          <U4 'both'
Data variables:
    chrom100k_da         (cell, chrom100k, mc_type, count_type) uint16 dask.array<chunksize=(3397, 2479, 2, 2), meta=np.ndarray>
Attributes:
    obs_dim:  cell
    var_dim:  chrom100k
# you can add the cell metadata into MCDS
mcds.add_cell_metadata(metadata)

Filter Features

mcds.add_feature_cov_mean(var_dim=var_dim)
Feature chrom100k mean cov across cells added in MCDS.coords['chrom100k_cov_mean'].
../../_images/mch_mcg_100k_basic_14_1.png

We saw three parts here with coverages from low to high, including:

  1. Low coverage regions

  2. chrX regions, because this dataset from male mouse brain

  3. Other autosomal regions

# filter by coverage - based on the distribution above
mcds = mcds.filter_feature_by_cov_mean(
    min_cov=min_cov,  # minimum coverage
    max_cov=max_cov  # maximum coverage
)

# remove blacklist regions
mcds = mcds.remove_black_list_region(
    black_list_path=black_list_path,
    f=black_list_fraction  # Features having overlap > f with any black list region will be removed.
)

# remove chromosomes
mcds = mcds.remove_chromosome(exclude_chromosome)
Before cov mean filter: 27269 chrom100k
 After cov mean filter: 25242 chrom100k 92.6%
1189 chrom100k features removed due to overlapping (bedtools intersect -f 0.2) with black list regions.
20 chrom100k features in ['chrM', 'chrY'] removed.

Calculate Feature mC Fractions

mcds.add_mc_frac(
normalize_per_cell=True,  # after calculating mC frac, per cell normalize the matrix
    clip_norm_value=10  # clip outlier values above 10 to 10
)

# load only the mC fraction matrix into memory so following steps is faster
# Only load into memory when your memory size is enough to handle your dataset
if load and (mcds.get_index(obs_dim).size < 20000):
    mcds[f'{var_dim}_da_frac'].load()
/home/hanliu/miniconda3/envs/allcools_new/lib/python3.8/site-packages/dask/core.py:119: RuntimeWarning: invalid value encountered in true_divide
  return func(*(_execute_task(a, cache) for a in args))

The RuntimeWarning is expected (due to cov == 0). You can ignore it.

Select Highly Variable Features (HVF)

mCH HVF

mch_hvf = mcds.calculate_hvf_svr(var_dim=var_dim,
                                 mc_type=mch_pattern,
                                 n_top_feature=n_top_feature,
                                 plot=True)
Fitting SVR with gamma 0.0416, predicting feature dispersion using mc_frac_mean and cov_mean.
Total Feature Number:     24045
Highly Variable Feature:  20000 (83.2%)

mCG HVF

mcg_hvf = mcds.calculate_hvf_svr(var_dim=var_dim,
                                 mc_type=mcg_pattern,
                                 n_top_feature=n_top_feature,
                                 plot=True)
Fitting SVR with gamma 0.0416, predicting feature dispersion using mc_frac_mean and cov_mean.
Total Feature Number:     24045
Highly Variable Feature:  20000 (83.2%)

Get cell-by-feature mC fraction AnnData

mch_adata = mcds.get_adata(mc_type=mch_pattern,
                           var_dim=var_dim,
                           select_hvf=True)
mch_adata
AnnData object with n_obs × n_vars = 16985 × 20000
    obs: 'AllcPath', 'mCCCFrac', 'mCGFrac', 'mCGFracAdj', 'mCHFrac', 'mCHFracAdj', 'FinalReads', 'InputReads', 'MappedReads', 'DissectionRegion', 'BamFilteringRate', 'MappingRate', 'Plate', 'Col384', 'Row384', 'FANSDate', 'Slice', 'Sample'
    var: 'bin_end', 'bin_start', 'chrom', 'cov_mean', 'CHN_mean', 'CHN_dispersion', 'CHN_cov', 'CHN_score', 'CHN_feature_select', 'CGN_mean', 'CGN_dispersion', 'CGN_cov', 'CGN_score', 'CGN_feature_select'
mcg_adata = mcds.get_adata(mc_type=mcg_pattern,
                           var_dim=var_dim,
                           select_hvf=True)
mcg_adata
AnnData object with n_obs × n_vars = 16985 × 20000
    obs: 'AllcPath', 'mCCCFrac', 'mCGFrac', 'mCGFracAdj', 'mCHFrac', 'mCHFracAdj', 'FinalReads', 'InputReads', 'MappedReads', 'DissectionRegion', 'BamFilteringRate', 'MappingRate', 'Plate', 'Col384', 'Row384', 'FANSDate', 'Slice', 'Sample'
    var: 'bin_end', 'bin_start', 'chrom', 'cov_mean', 'CHN_mean', 'CHN_dispersion', 'CHN_cov', 'CHN_score', 'CHN_feature_select', 'CGN_mean', 'CGN_dispersion', 'CGN_cov', 'CGN_score', 'CGN_feature_select'

Scale

log_scale(mch_adata)
StandardScaler(with_mean=False)
log_scale(mcg_adata)
StandardScaler(with_mean=False)

PCA

mCH PCA

sc.tl.pca(mch_adata)
ch_n_components = significant_pc_test(mch_adata)
fig, axes = plot_decomp_scatters(mch_adata,
                                 n_components=ch_n_components,
                                 hue=mch_col_name,
                                 hue_quantile=(0.25, 0.75),
                                 nrows=3,
                                 ncols=5)
47 components passed P cutoff of 0.1.
Changing adata.obsm['X_pca'] from shape (16985, 50) to (16985, 47)
Red axis labels are used PCs
../../_images/mch_mcg_100k_basic_31_1.png

mCG PCA

sc.tl.pca(mcg_adata)
cg_n_components = significant_pc_test(mcg_adata)
fig, axes = plot_decomp_scatters(mcg_adata,
                                 n_components=cg_n_components,
                                 hue=mcg_col_name,
                                 hue_quantile=(0.25, 0.75),
                                 nrows=3,
                                 ncols=5)
23 components passed P cutoff of 0.1.
Changing adata.obsm['X_pca'] from shape (16985, 50) to (16985, 23)
Red axis labels are used PCs
../../_images/mch_mcg_100k_basic_33_1.png

Concatenate PCs

ch_pcs = mch_adata.obsm['X_pca'][:, :ch_n_components]
cg_pcs = mcg_adata.obsm['X_pca'][:, :cg_n_components]

# scale the PCs so CH and CG PCs has the same total var
cg_pcs = cg_pcs / cg_pcs.std()
ch_pcs = ch_pcs / ch_pcs.std()

# total_pcs
total_pcs = np.hstack([ch_pcs, cg_pcs])

# make a copy of adata, add new pcs
# this is suboptimal, will change this when adata can combine layer and X in the future
adata = mch_adata.copy()
adata.obsm['X_pca'] = total_pcs
del adata.uns['pca']
del adata.varm['PCs']

Clustering

Calculate Nearest Neighbors

if knn == -1:
    knn = max(15, int(np.log2(adata.shape[0])*2))
sc.pp.neighbors(adata, n_neighbors=knn)

Leiden Clustering

sc.tl.leiden(adata, resolution=resolution)

Manifold learning

tSNE

tsne(adata,
     obsm='X_pca',
     metric='euclidean',
     exaggeration=-1,  # auto determined
     perplexity=30,
     n_jobs=-1)
fig, ax = plt.subplots(figsize=(4, 4), dpi=300)
_ = categorical_scatter(data=adata,
                        ax=ax,
                        coord_base='tsne',
                        hue='leiden',
                        text_anno='leiden',
                        show_legend=True)
../../_images/mch_mcg_100k_basic_43_0.png

UMAP

sc.tl.umap(adata)
fig, ax = plt.subplots(figsize=(4, 4), dpi=300)
_ = categorical_scatter(data=adata,
                        ax=ax,
                        coord_base='umap',
                        hue='leiden',
                        text_anno='leiden',
                        show_legend=True)
../../_images/mch_mcg_100k_basic_46_0.png

Interactive plot

# in order to reduce the page size, I downsample the data here, you don't need to do this
interactive_scatter(data=adata,
                    hue='leiden',
                    coord_base='umap',
                    max_points=3000)

Save Results

adata.write_h5ad('Brain.chrom100k-clustering.h5ad')
adata
/home/hanliu/miniconda3/envs/allcools_new/lib/python3.8/site-packages/anndata/_core/anndata.py:1228: FutureWarning:

The `inplace` parameter in pandas.Categorical.reorder_categories is deprecated and will be removed in a future version. Reordering categories will always return a new Categorical object.

... storing 'DissectionRegion' as categorical
/home/hanliu/miniconda3/envs/allcools_new/lib/python3.8/site-packages/anndata/_core/anndata.py:1228: FutureWarning:

The `inplace` parameter in pandas.Categorical.reorder_categories is deprecated and will be removed in a future version. Reordering categories will always return a new Categorical object.

... storing 'Plate' as categorical
/home/hanliu/miniconda3/envs/allcools_new/lib/python3.8/site-packages/anndata/_core/anndata.py:1228: FutureWarning:

The `inplace` parameter in pandas.Categorical.reorder_categories is deprecated and will be removed in a future version. Reordering categories will always return a new Categorical object.

... storing 'Sample' as categorical
/home/hanliu/miniconda3/envs/allcools_new/lib/python3.8/site-packages/anndata/_core/anndata.py:1228: FutureWarning:

The `inplace` parameter in pandas.Categorical.reorder_categories is deprecated and will be removed in a future version. Reordering categories will always return a new Categorical object.

... storing 'chrom' as categorical
AnnData object with n_obs × n_vars = 16985 × 20000
    obs: 'AllcPath', 'mCCCFrac', 'mCGFrac', 'mCGFracAdj', 'mCHFrac', 'mCHFracAdj', 'FinalReads', 'InputReads', 'MappedReads', 'DissectionRegion', 'BamFilteringRate', 'MappingRate', 'Plate', 'Col384', 'Row384', 'FANSDate', 'Slice', 'Sample', 'leiden'
    var: 'bin_end', 'bin_start', 'chrom', 'cov_mean', 'CHN_mean', 'CHN_dispersion', 'CHN_cov', 'CHN_score', 'CHN_feature_select', 'CGN_mean', 'CGN_dispersion', 'CGN_cov', 'CGN_score', 'CGN_feature_select'
    uns: 'log', 'neighbors', 'leiden', 'umap'
    obsm: 'X_pca', 'X_tsne', 'X_umap'
    obsp: 'distances', 'connectivities'
adata.obs.to_csv('Brain.ClusteringResults.csv.gz')
adata.obs.head()
AllcPath mCCCFrac mCGFrac mCGFracAdj mCHFrac mCHFracAdj FinalReads InputReads MappedReads DissectionRegion BamFilteringRate MappingRate Plate Col384 Row384 FANSDate Slice Sample leiden
cell
10E_M_207 /gale/raidix/rdx-4/mapping/10E/CEMBA190625-10E... 0.006059 0.791481 0.790210 0.024853 0.018908 1394119.0 3382862 2208361.0 10E 0.631291 0.652808 CEMBA190625-10E-2 20 4 190625 10 10E_190625 14
10E_M_338 /gale/raidix/rdx-4/mapping/10E/CEMBA190625-10E... 0.005151 0.738883 0.737531 0.017620 0.012533 1623613.0 3930932 2616811.0 10E 0.620455 0.665697 CEMBA190625-10E-1 9 6 190625 10 10E_190625 14
10E_M_410 /gale/raidix/rdx-4/mapping/10E/CEMBA190625-10E... 0.005322 0.741459 0.740076 0.017949 0.012695 1698314.0 4325806 2883026.0 10E 0.589073 0.666471 CEMBA190625-10E-1 3 9 190625 10 10E_190625 8
10E_M_426 /gale/raidix/rdx-4/mapping/10E/CEMBA190625-10E... 0.005194 0.729766 0.728355 0.017188 0.012057 1830508.0 4893582 3245794.0 10E 0.563963 0.663276 CEMBA190625-10E-1 7 9 190625 10 10E_190625 14
10E_M_431 /gale/raidix/rdx-4/mapping/10E/CEMBA190625-10E... 0.006075 0.756491 0.755003 0.023721 0.017754 1585419.0 4273210 2838002.0 10E 0.558639 0.664138 CEMBA190625-10E-1 8 8 190625 10 10E_190625 14

Sanity test

This test dataset come from [Liu et al., 2021], so we already annotated the cell types. For new datasets, see following notebooks about identifying cluster markers and annotate clusters

try:
    cell_anno = pd.read_csv('../../data/Brain/snmC-seq2/HIP.Annotated.CellMetadata.csv.gz', index_col=0)
    fig, ax = plt.subplots(figsize=(4, 4), dpi=250)
    adata.obs['CellTypeAnno'] = cell_anno['MajorType']
    adata.obs['CellTypeAnno'].fillna('nan', inplace=True)
    _ = categorical_scatter(data=adata,
                            ax=ax,
                            coord_base='umap',
                            hue='CellTypeAnno',
                            text_anno='CellTypeAnno',
                            palette='tab20',
                            show_legend=True)
except BaseException:
    pass
../../_images/mch_mcg_100k_basic_53_0.png